12 research outputs found

    Abscission Couples Cell Division to Embryonic Stem Cell Fate.

    Get PDF
    Cell fate transitions are key to development and homeostasis. It is thus essential to understand the cellular mechanisms controlling fate transitions. Cell division has been implicated in fate decisions in many stem cell types, including neuronal and epithelial progenitors. In other stem cells, such as embryonic stem (ES) cells, the role of division remains unclear. Here, we show that exit from naive pluripotency in mouse ES cells generally occurs after a division. We further show that exit timing is strongly correlated between sister cells, which remain connected by cytoplasmic bridges long after division, and that bridge abscission progressively accelerates as cells exit naive pluripotency. Finally, interfering with abscission impairs naive pluripotency exit, and artificially inducing abscission accelerates it. Altogether, our data indicate that a switch in the division machinery leading to faster abscission regulates pluripotency exit. Our study identifies abscission as a key cellular process coupling cell division to fate transitions

    Abscission couples cell division to embryonic stem cell fate

    Get PDF
    Cell fate transitions are key to development and homeostasis. It is thus essential to understand the cellular mechanisms controlling fate transitions. Cell division has been implicated in fate decisions in many stem cell types, including neuronal and epithelial progenitors. In other stem cells, such as embryonic stem (ES) cells, the role of division remains unclear. Here, we show that exit from naive pluripotency in mouse ES cells generally occurs after a division. We further show that exit timing is strongly correlated between sister cells, which remain connected by cytoplasmic bridges long after division, and that bridge abscission progressively accelerates as cells exit naive pluripotency. Finally, interfering with abscission impairs naive pluripotency exit, and artificially inducing abscission accelerates it. Altogether, our data indicate that a switch in the division machinery leading to faster abscission regulates pluripotency exit. Our study identifies abscission as a key cellular process coupling cell division to fate transitions

    Perceptions and Practices of Key Worker Stakeholder Groups in Hospital Animal- Assisted Intervention Programs on Occupational Benefits and Perceived Risks

    Get PDF
    Background: Animal-assisted intervention (AAI) programs, used widely for patient benefit, have increasingly been used for healthcare workers (HCW) to reduce occupational stress. However, there are barriers to these programs which limit their utilization, for both patients and HCW, specifically infectious disease concerns. The aim of the research project is to identify barriers and facilitators to AAI program use for healthcare worker benefit, and determine knowledge, beliefs, and practices regarding infectious disease risk and control policies, in order to understand the contextual parameters of program implementation. Methods: We collected perceptions of key stakeholders involved with hospital AAI programs (HCW and AAI workers) through semi-structured in-depth interviews. We used framework analysis to guide thematic coding, completed independently by three researchers. Results: We interviewed 37 participants in this study. We divided our themes into two topic areas: program use for HCW and perceived infectious disease risk. Use for healthcare workers included perspectives on the benefits for HCW and program barriers and facilitators (specifically collaboration and leadership). Perceived risk included opinions on infection concerns with AAI, thoughts on control measures to reduce this risk, and responsibility for safety during these programs. Conclusions: While significant benefits were reported for HCW, they were limited by administrative barriers and hazard concerns. Facilitators to surmount these barriers are best implemented with collaboration across the hospital and appropriate leadership roles to direct safe program implementation. By addressing these barriers through targeted facilitators in the form of evidence-backed guidelines, AAI programs can be used to benefit both patients and HCW

    Extent of myosin penetration within the actin cortex regulates cell surface mechanics.

    Get PDF
    In animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures

    Microbial sharing between pediatric patients and therapy dogs during hospital animal-assisted intervention programs

    Get PDF
    Microbial sharing between humans and animals has been demonstrated in a variety of settings. However, the extent of microbial sharing that occurs within the healthcare setting during animal-assisted intervention programs is unknown. Understanding microbial transmission between patients and therapy dogs can provide important insights into potential health benefits for patients, in addition to addressing concerns regarding potential pathogen transmission that limits program utilization. This study evaluated for potential microbial sharing between pediatric patients and therapy dogs and tested whether patient-dog contact level and a dog decolonization protocol modified this sharing. Patients, therapy dogs, and the hospital environment were sampled before and after every group therapy session and samples underwent 16S rRNA sequencing to characterize microbial communities. Both patients and dogs experienced changes in the relative abundance and overall diversity of their nasal microbiome, suggesting that the exchange of microorganisms had occurred. Increased contact was associated with greater sharing between patients and therapy dogs, as well as between patients. A topical chlorhexidine-based dog decolonization was associated with decreased microbial sharing between therapy dogs and patients but did not significantly affect sharing between patients. These data suggest that the therapy dog is both a potential source of and a vehicle for the transfer of microorganisms to patients but not necessarily the only source. The relative contribution of other potential sources (e.g., other patients, the hospital environment) should be further explored to determine their relative importance
    corecore